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Dynamics of Complex Flow 
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Problems of the flow of complex suspensions or melt materials and powders are 
classified according to the existence of exact formulations and of useful models. 
Regimes of interest are classified into dilute, entangled, and packed, and the 
difficulties and sucesses of the different types of objects and the different types 
of regimes are studied. Particular notice is taken of situations where a phase 
change is found between regimes. 

KEY W O R D S :  Melt rheology; polymer dynamics; granular flow; powder 
rheology. 

1. TYPES AND REGIMES 

I will study three types of objects in a complex flow, and three regimes. The 
types are: (1) rods (liquid crystal molecules), (2) flexible (or semiflexible) 
polymers, and (3) shapes (soft and hard). The regimes are (I)  dilute, i.e, 
each object is far away from every other compared to its own size and 
hydrodynamic influence; (2) entangled, i.e., objects do sense their 
neighbors, but still have substantial freedom to move; and (3) packed, i.e., 
each object is in permanent contact with others. To these one can add the 
solid version of regime 3, which is glass. 

At first sight these regime divisions may seem arbitrary, but in several 
cases there is a phase change between the flows loosely defined as an 
abrupt change in behavior, and even when there is not, they define areas 
where effective approximations can be made. The following questions arise 
concerning the types and regimes: 

(~) Is there a mathematically exact description available, and in 
particular, is here a useful exact description? 
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(fl) Is there a useful model, i.e., a simplification which contains 
enough of reality to answer question ~ ? 

(?) Are there solutions to ~ and fl? 

(6) Is it possible to simulate the systems so as to produce a check on 
theory, since experiment is often difficult to characterize clearly? 

I will now give a commentary, on the current state of affairs as I see 
it. (This is not a review paper--it is a personal view; the reader will find 
a much broader treatment in the other papers of this conference.) 

2. RODS 

(a) The dilute ease has been solved long ago (see ref. 1, Chapter 8, 
for review). 

(b) The entangled case seems adequately handled by assuming a 
tube model, i.e., representing the cage of neighboring rods as a cylinder 
from which a particular rod escapes by Browman motion and thus relaxes 
stress. The original constitutive equation coming from this model is 
reviewed in the book of Doi and Edwards. ~ It has been meticulously 
developed by Rallison ~2) and is standing up well. The viscosity goes like 
rod length to the ninth power, and certainly very high viscosities are found. 

An enormously more complex system is now emerging with modern 
chemical synthesis. For example, Aharoni and Edwards TM synthesized 
hinged rods by the Yamazaki pathway and one can see intuitively that the 
viscoelasticity of the situation depicted in Fig. 1 is very different from that 
in Fig. 2 (the dots represent other rods passing through the plane, which 
are not easy to draw). The molecule in Fig. 1 is locked and is only released 
if the confining rods move. If they are rods, one can work it out, but if they 
also are flails, then the system locks. Remarkable new materials can be now 
envisaged. 

i 

= 

Fig. 1 
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Fig. 2 

This discussion has ignored nematicity, and it is possible to find such 
regimes. In general, however, nematicity will arise and domains of parallel 
rods, in flow, offer a real challenge. New work by Marrucci (4) addresses 
this problem. 

I feel sure that there will be a phase change between the dilute and 
entangled regimes, but there is no experimental study of this region, 
principally because of the competition of nematicity. 

(c) The packed case of rods is not very accessible experimentally, but 
is of outstanding interest theoretically, for, since every rod is tightly 
enclosed by neighbors, it is possible to use mean field theory rigorously, 
and hence find a soluble model of the glass transition. The simplest approach 
has been studied by Edwards and Evans, ~5) who solve the diffusion of a rod 
where motion is blocked by other rods. They find, on the assumption that 
the blocking rod is uncorrelated with the rod it is blocking, that 

D = Do( 1 - ~,) 

where ~ is Tg/T or V J V ,  etc. If cooperation is allowed, i.e., processes like 
those in Fig. 3, then one has 

D =  Doe I'4/tl ~)1 

which is Vogel-Fulcher-Dolittle law. 
Thus the essential singularity of the glass transition can be identified 

with the fact that as T ~  T~ only cooperative motion involving more and 
more molecules is permitted. 

The simulation of rod systems is discussed in ref. 6. 

Fig. 3 
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3. POLYMERS 

Already in the dilute case a single chain has a topological problem, for 
these two configurations can only be interchanged very slowly (see Fig. 4), 
but it appears from the vast amount of experimental data that this just 
renormalizes the constants which would obtain if the chain was considered 
to be invisible to itself, i.e., able to pass directly between, for example, the 
configurations sketched in Fig. 4. 

Hydrodynamic effects are screened out in the entangled regime, so that 
the viscosity gradually changes from M m to CM, where M is the 
molecular weight and C the concentration. However, as the concentration 
further increases, there is a phase change up to M 3'4, where M 3 is easily 
explained by reptation down the tube, but the remaining 0.4 has varying 
explanations. 

It is possible to write the exact equations for the Brownian motion of 
polymers, modeled as curves R(s, t), s being the arc length. The distribu- 
tion of chains P, in equilibrium, is 

[ 3 L . L c ] 
exp --~ll i fo ",2(s) d , - ~  fo fo W(Ri(si)-Rj(si))ds'ds'J 

t, J 

and this is the equilibrium solution of 

where G is the Oseen hydrodynamic tensor and l the Kuhn length. Rather 
remarkably, this equation conserves topology and gives an exact basis of 
polymer hydrodynamics. However, it seems impossible to solve directly, if 
G is averaged, it gives Zimm's preaveraged equation, which is satisfactory 
below the transition, but cannot describe the tube model which is essential 

Fig. 4 
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above the transition to the 3:4 regime. Above the transition there are many 
effective applications of the idea that the polymer has to reptate by 
Brownian motion in a tube, and these are reviewed in ref. 1. There has not 
been much attention paid to the problem of the phase change between the 
M and M 34 regimes, probably because it is difficult to do convincing 
experiments right at the transition. However simple models can be offered ~7) 
and the further transition to the glass regime has been much studied. ~8 ~ot 

Simulation of the packed polymer problem is bedevilled by the immense 
amount of computer time involved, and I find myself very skeptical of 
much work purporting to resolve this issue. There is no doubt that with a 
fixed background polymers reptate correctly, and the longest computations 
so far ~1~ support this. 

Some interesting new results of Baumgartner and Muthukumar (~2) 
suggest that under appropriate conditions, disordered background inter- 
action can give the polymer localized states and a theoretical basis for this 
can be found. (13 a6~ The mathematics resembles that for the Anderson 
localization in semiconductors; it is too early to see whether this will prove 
an important issue in viscoelastic models. 

4. S H A P E S  

4.1. So f t  

Shapes can have complex internal structure, but the simplest model is 
to say that the energy is solely a function of surface area and that the blob 
of material is incompressible and of integrity. In this case an analogous 
exact equation is available for the evolution of the shape and movemcnt of 
all the blobs given by 

qJ(r, t )  = O 

The coupled equations in low-Reynolds-number flow with viscosity v for a 
fluid velocity v(r, t) and ff are 

(~U V)/) t 0 1 Vp .q- v V2v 

where # is a Lagrange multiplier satisfying 

~p 
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Fig. 5 

and these equations can be checked to obtain Taylor's answer for the (near 
spherical) dilute case. ~7~ However, they suffer the same problem as the 
polymer equations in concentrated suspensions, in that approximations 
destroy the ability of the equations to preserve the integrity of the blobs of 
material when they collide. An alternative attack is to simulate blob flow, 
and this has some success by using a Monte Carlo method (e.g., see Fig. 5). 

For highly concentrated blobs, which are the analogue of the polymer 
melt, the problem now resembles foams, in that the pattern of flow is 
dominated by changes in the number of faces of the closely packed 
polyhedra. 

In Fig. 6, side a shrinks to zero and is replaced by a new side b. 
The mathematics of this has not yet been resolved, principally because 

the intense correlations do not seem to point to any easy and convincing 
model. 

Fig. 6 
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4.2~ Hard Shapes 

Hard shapes are powders. This problem requires some development of 
the fundamental basis of its statistical mechanics before flow problems can 
be attempted. The key issue is that there must be an intensive quantity 
which describes how different powders partition a joint space available to 
them just as temperature partitions energy between materials in thermal 
contact. The dilatancy available to powders, i.e., the fact that a given 
amount of material can occupy a variable volume, means that volume for 
powders takes the role of energy in thermodynamic systems. A powder has 
an entropy, of course, being the logarithm of the number of ways the 
powder can be assembled to occupy a definite space. Thus, by exactly the 
arguments underlying statistical mechanics, we are led to the equivalent 
formula that the analogue of temperature, which I call the compactivity X, 
is given by 

X = 0 V/~S 

S =  2 log s f 2 = f 6 ( v -  W) 

where W is the function which gives the volume in terms of the coordinates 
and orientation of the powder grains and 2 an analogue of Boltzmann's 
constant which converts entropy into volume. As usual, it is more 
convenient to go to the canonical ensemble and introduce an effective 
volume Y which is the analogue of free energy, 

( ,  

exp( - Y/AX) = J e "J/~~ d(all) 

~Y 
V = Y - X - -  

As an example, (~8~ suppose we have a mixture of two powders A and B and 
make the very simplest assumption that a contribution to the final volume 
is made by every pair of powder particles according to whether the pair is 
AA, AB, or BB. Then W has the form of the Bragg-Williams theory of 
alloys with the crucial quantity 

v=  VAA +VB~--2VAB 

If this is negative, the powders A and B are miscible, but is if v > 0, then 
there will be a surplus of A over B, 0 say, where the Bragg-Williams mean 
field equation is 

4, = tanh v(~/2X 
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The mixture is critical at X=v/2,  where ~b commences becoming 
nonvanishing. At this level of compactivity the powder generates A-rich or 
B-rich domains, until ultimately it will separate at X = 0 into pure A and 
pure B. Another example of the use of these concepts is to calculate v in 
terms of X using a variety of models, using material in the statistical 
mechanical literature.(~8' ~9 

One can now attempt phenomenologicai equations for powder flow. 
Just as a liquid is determined by the equations of continuity, fluid velocity, 
and temperature, one can aim at equations for p, v, and Y. Powders flow 
like liquids, so there ought to be a family resemblance. 

The first two equations, continuity and Navier Stokes, look just the 
same, with a constitutive equation for the stress tensor which one can 
argue will be dependent on X, i.e., 

~,,x t 

Here the viscosities l~ can bc expected to look something like t/X, because 
X =  ~ corresponds to the powder breaking up at the minimum density, 
where ll is zero, whereas X=O is the maximum random close packing, 
where it is infinite. The equation for X will have a form like 

~X 

where pij is the strain rate �89 Ouj/Oxi) and A(X) an appropriate 
function to return X to a steady value when y is zero. The simplest argument 
would give A(X) equal to aX, thus assuming the powder would become 
close packed when forces were removed (it would not of course, but ! do 
not have space here to discuss more realistic statements). The terms in ') 
and ~ represent the extent to which the powder is "frothed" by shear and 
by compression. 

Such equations show very interesting descriptions of, for example, the 
transition to plug flow from a nonmonotonic stress/strain rate relationship. 
Thus, the equations above predict where plug flow commences. I feel a 
microscopic, as against phenomenological, derivation of them will produce 
new features. 

Finally, simulation of powders is producing very interesting new 
results(~8 2o> which offer a challenge for the analytic theories to explain. 
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